
N90-22314

AUTOMATED PROCEDURE EXECUTION

for
SPACE VEHICLE AUTONOMOUS CONTROL

by Thomas A. Broten and David A. Brown

TRW

One Space Park R2-2062

Redondo Beach, CA 90278

Abstract

Increased operational autonomy and reduced operating costs have become

critical design objectives in next-generation NASA and DoD space

programs. Our objective is to develop a semi-automated system for
intelligent spacecraft operations support. This paper presents the

Spacecraft Operations and Anomaly Resolution System (SOARS) as a

standardized, model-based architecture for performing High-Level

Tasking, Status Monitoring and automated Procedure Execution Control for

a variety of spacecraft. The particular focus here is on the Procedure

Execution Control module. A hierarchical procedure network is proposed

as the fundamental means for specifying and representing arbitrary

operational procedures. A separate procedure interpreter controls

automatic execution of the procedure, taking into account the current

status of the spacecraft as maintained in an object-oriented spacecraft
model.

1. Introduction

A new generation of NASA and DoD

space vehicles is emerging, for

which a high degree of operational
autonomy is a fundamental

requirement. The requirement is

typically expressed as a need for

on-board task management and

contingency handling for extended
periods of time, without direct

human involvement [Sobieski,

1989; GSFC, 1988]. The sources of

the requirement stem from a) life-

cycle cost control through

reduction of ground support crew
size (eg, for Space Station

platform and mission support

activities), b)improved spacecraft
survivability through reduced

dependence on vulnerable fixed-

base ground stations (eg, for early

warning and communications

satellites), and c) operations at
extreme distances from the Earth

where signal propagation time

239

PRECEDING PAGE BLANK NOT FILMED

precludes tightly-coupled human

control (eg, for interplanetary
probes, rovers). The increased

levels of space vehicle autonomy
now being proposed will

substantially exceed the
capabilities of traditional

space/ground command link
operations. The next level of

autonomy will be termed the "task

level" here, to distinguish it from

the "command level" and to signify
independent execution and control

of a complete operational

procedure upon receipt of an

external tasking order or an

internal alarm message.

Raising space vehicle autonomy to
the task level involves advances in

a number of areas. First,
independent procedure execution

means more than simply executing
a prestored sequence of commands.

The structure of the procedure
must contain interim tests of the

current situation to assure that the

previous step was performed

correctly before the next step is
begun; otherwise, equipment
damage or unsafe conditions could

result. The procedure must also

incorporate basic contingency

handling routines, to avoid leaving
the space vehicle in an undesirable

state in the event of premature
procedure termination.

Second, there must be facilities

for on-board monitoring of the
current situation that are tied-in

to the space vehicle's baseline

telemetry and command system.

Automated real-time

interpretation of data is necessary
when direct human supervision is

absent or delayed. Recent

experiments with expert systems

for automatic detection/diagnosis
of anomalies, such as SCARES

[Hamilton, 1986], SHARP [Lawson,

1989], SFMS [Parks, 1990], and

StarPlan [Siemens, 1986] are

gradually expanding the capability
for real-time situation
assessment.

Third, true high-level tasking
implies the existence of a suitable

tasking language in which a task
(or operational goal) can be

precisely and unambiguously

expressed. Additional AI planning
facilities for breaking down the
high-level task into a coordinated

procedure containing primitive
spacecraft commands and

programmed status checks will be

required in the long-term. Space
vehicle autonomy can benefit

directly by borrowing some of the

new robot task planning languages
and architectures [Fu, 1987; Albus,

1987].

2. SOARS Architecture

The Spacecraft Operations and

Anomaly Resolution System
(SOARS) is a model-based

prototype for supporting
autonomous spacecraft operations.
As shown in Figure 1, SOARS

represents an add-on capability for
incorporation into any space

240

o
1:13

0 _I

Ul

c01

Ol o

ilco

o

>.E

LJ

o

E

F-

i

m

---.5 E

o

£

, 0

0

--_j

) _1
• _.._I

;%e

It--I

_ or)
-.t c2 _

_, _ A

l I ,_-- _ _ ¢_ II

0

- 0 0 0

n_

0

C_
,(_.

CD

o_

c-"

L

<

c_

.<
0
LO

L

L__

241

vehicle/ground station control loop
with standardized bus and

processor interfaces to command &

telemetry data. Under traditional

nonautonomous operations,
commands are transmitted from

the ground on the uplink, and routed

to the appropriate space vehicle
subsystems for execution. The

space vehicle subsystems
continuously report status, which

is encoded in telemetry for
transmission to the ground on the

downlink. Under upgraded
autonomous operations, additional

commands dealing with high-level
tasking and operational procedure

control can be sent to the space
vehicle. Correspondingly, task

status and autonomous processing
performance are reported back to

the ground. (Note that some
additional command and telemetry
slots must be allocated above the

space vehicle baseline to cover

autonomous operations.) For the

initial demonstration flights, all of
the SOARS functions would reside

on the ground to permit thorough

open-loop validation of the control

processes. Subsequently, many of

those functions would migrate to

the space vehicle for true

autonomous operations in the

closed-loop mode.

The target SOARS flight segment,
called the Autonomous Controller

Unit or ACU, is composed of three

basic elements, which are shown in

Figure 2. The Task Analyzer

receives high-level tasking

commands from the ground segment

(via

decomposes
coordinated

commands

checkpoints.

the command subsystem), and
the task into a

program of primitive

and procedural
The Status Monitor

receives status data from the

space vehicle subsystems, and

detects the occurrence of specified

vehicle states indicating expected

(ie, planned) or unexpected (ie,
anomalous) conditions. The
Procedure Executor executes a

tasking program (received from the

Task Analyzer), or a corrective

action procedure (based on the
detection of an anomalous

condition by the Status Monitor)
under real-time control.

The remainder of this paper

focuses on the design and operation
of the Procedure Executor

component. Details of the

preliminary design of the other

components are contained in the

ACU specifications [Brown, 1989].
The Procedure Executor interfaces

with a simulated ground segment
workstation called the Ground

Tasking Interface, through which

the operator can directly program

and supervise autonomous

operations. The prototype

implementation runs on a
Symbolics 3645 with the

human/computer interface and

spacecraft model (the DSP

satellite) implemented in the
Knowledge Engineering Environment

(KEE) from Intellicorp and the

Procedure Executor implemented in

Common Lisp.

242

D
U
<
v

r-

d_

0
L_

c-
O
U

f.n

o
E
o
c-
o

.<

if)

0_ up f'-]

f

6O nr"
DO
i__ I--

"(z
I-- 0
_0 5-

U

3

<1

I

_8c
0 _ _ 0
L "_ X J,--_

_ L_

O
> L

"0

k
L _ 0

(D 0 (3, L
< u < dl.

_3

O
(fl L

u
L 0
o L. tO

0 (r)

2Z _-- (j
"EP 0 0
(D _ L

0 _ V

rb (D

< _-

rr
uJ

_N

<J

Z
.<

if)

c

E

U
"<U

r

r

Ar-

r--

(1.)1
ul
Ol

-Ol

Ol

(/3

C

¢-
]> o o
60 U U

Ill
rr rr
D O

ill
U tJ
O uJ
rr X

ill
n

4...}
c-
(1)

E

(1}
6O

c-
c J}

ii

CO
Or"

o
{P}

04
{1}
L

LL

243

3. Procedure Development

Figure 3 shows a sample

operational procedure from the

Defense Support Program (DSP).

The procedure specifies how to

attempt recovery from the loss of
the second communications link.

(For the DSP satellite there are

three links total, each with a

different recovery procedure.

Manual procedures such as this are

normally developed during detailed

design and delivered as standard

operating procedures [Stager,

1987].)

The procedure is entered at the top

and execution follows a path

through the nodes until an exit
point is reached. The procedural

steps specify tests to be

performed (diamonds), actions to

be taken (boxes), or exit points

(circles). The arrows specify

possible test results or simple

continuations following an action.
The tests and actions in some

cases are primitive (eg, 'Is the L2

carrier present?' or 'Command Io

bit rate switch to mode 50'); and in

other cases complex (eg, 'Verify

L3' -- which may involve running

the complete procedure for the
third link).

In the demonstration scenario a

corresponding procedure graph is

created on the ground using the
interactive facilities in the Ground

Tasking Interface (GTI). A portion

of the Link-2 procedure graphic is

shown in the large window of the

GTI display in Figure 4. Once

created by the operator, the

procedure graphic is automatically

processed and translated into an
efficient internal representation
suitable for automatic execution.

4. Procedure Representation

There are various possible ways to

internally represent a space
vehicle operational procedure for

computational purposes. One
straightforward representation is

as a directly executable computer

program. In this approach the

program will consist of a
conditional branch statement (if

<condition> then <step i> else

<step j>) or a case statement (case
<condition> A: <step i> B: <step j>

C: <step k>) for each procedural

step. In other words, choose the

next step depending on the outcome
of the conditional test, until an

exit point is reached.

This simple approach, however, has

significant drawbacks. First,
highly nested if ... then ... else or

case statements are messy and

notoriously difficult to understand

and debug. For the sample

procedure above, the longest path

would require nesting to 16 levels.

Second, there is no straightforward

way to handle repeated steps in the

procedure. Common subpaths must

be represented separately and

redundantly, unless got o

statements are included (thereby
overriding the natural program

244

LOST OF L2

CAPAEt_LITY

NO

YES (STILL ON

EARTH)

CONS_OER L_ V
TLM DATA

RATE SWITCH

TO MODE 50

¢ES

LO BtT

RATE SWITCH
MOOE ,SO

®

DO LOSS 0;

EARTH LOCK

I L_TUR_/

®

NO

®

ULATION

ACTIVE

ON L3
TURN ON PRN

YES

NO

®
NO

NO

Figure 3. DSP Link-2 Diagnostic Procedure

245

\

L

C

L

0

Q.

0

C_

O

L

246

flow). Repetitive procedural

cycles are also a problem for the

same reason, with the added

drawback that the depth of

recursive calls is not predictable

before the procedure is run.

Another possible representation
for a procedure is as a collection

of rules. In this approach each

procedural step would be encoded

in a separate if ... then ... rule.

The rule-based representation

permits a high degree of

modularization of the procedural

contents that is easy to understand
and maintain. Which rule fires next

is decided by the current situation

at any time, thus no explicit

procedure actually exists.

The problem with this
representation is that the rules

would need to implicitly encode

control knowledge as well as

diagnostic knowledge in order to

maintain the required flow of the

procedure. Mixing the two kinds of

knowledge always diminishes the

clarity of a rule, and defeats the
original objective of rule-based

systems, which is to keep these
knowledge types separate. Also,

not having an explicit

representation of a procedure
makes it difficult to reason about

the procedure itself.

In keeping with the DSP example, a

procedure also can be formally
represented as a directed (possibly

cyclic) graph. This representation
appears to overcome most of the

problems with the other

representations while retaining

their advantages, at the expense of
some additional software for an

interpreter (see below).

The nodes in the graph correspond
to tests of various status

conditions derived from the

continuously updated space vehicle

database model, and the arcs

correspond to procedural control
decisions which are followed

depending on the outcome of

performing a node test. Space

vehicle control actions (ie,

commands) are handled as side
effects associated with some

nodes. The actual execution of a

procedure is characterized by a

sequence of procedural steps (ie, a

path) through the graph that
provides a diagnostic record of the

specific tests performed, decisions
made, and actions taken. The

individual nodes in a procedure

graph may themselves be

procedures. A hierarchical

procedural representation allows

complex procedures to be built up

from more primitive tests and

actions. For example, a Mars lander

suddenly switching to an alternate

landing site during the descent

phase may involve resetting a
number of different control

subsystems, all of which possess

their own reset procedures.

Moreover, the formal graph
representation permits a natural

separation of control knowledge
(ie, what to do next) from test and

247

actuation knowledge (ie, how to do
it). The control knowledge can be

stored in the procedure

representation where it belongs,
while the test and actuation

knowledge can be placed directly in

the space vehicle model which the

procedure is testing and actuating.

to branch to next given the real-
time result of the command or test.

A hash table is automatically

created for a procedure after the

operator develops the graphical

representation of the procedure
using KEE's interactive interface
facilities

The above definition of a procedure

as a directed graph generally
allows for the representation of

arbitrarily complex procedures;

eg, it includes procedures with

provisions for contingency

handling, shared substeps,

repetitive cycles, interim status

reporting, and even delayed

operator enabling of critical steps,

if necessary. It also enables high-
level (AI search) analysis of the

declarative procedural form using
graph traversal techniques. High-

level procedural analysis methods

are required by the SOARS Task

Analyzer component, which is

responsible for selecting, adapting

and generating procedures to fulfill

ground tasking orders.

5. Execution Control

A procedure graph in SOARS is

implemented as a hash table. The
hash table allows direct access to

any node given that node's
identifier name. The content of a

node, in turn, stores the name of a

primitive function which is to be
executed when that node is

activated (eg, a command or

conditional test), and which node

The execution of a procedure graph
(whether for verification purposes

on the ground or for operational

purposes on the spacecraft) is

controlled by an interpreter

module. The procedure interpreter

takes as input the hash table

representation of a procedure. It

begins execution at the designated
starting node and follows a path

through the procedure graph. To
execute a node, the interpreter

looks up the name of the primitive
function associated with the node

in a telemetry/command function
library. The library contains the

primitive functions for performing
all of the basic telemetry tests and

command sequences for the

spacecraft. The library, which will

be different for each spacecraft,
serves as the principal interface

between SOARS and the spacecraft

via the provided command &

telemetry subsystem. The library
functions are written in the Tell

and Ask (tm) pseudo-English
language provided with KEE to

simplify the interface with domain

experts. After executing the
appropriate function for the node

and receiving the returned results,

the interpreter steps to the next
node based on those results.

248

Procedure execution stops when a
termination node is reached.

Throughout the execution of a

procedure and at critical

designated checkpoints, the

Procedure Executor reports status

back to the Ground Tasking
Interface and to the on-board

Status Monitor. The operator and

Status Monitor together exercise

external (high-level) supervisory

control over the execution process.

6. Directions for Future Work

Our ultimate goal is to field an
integrated system for intelligent

spacecraft operations support,

including a standardized SOARS

shell and integrated Knowledge

Capture Tools (KCT). The KCT

developments of the prior year are

targeted to support spacecraft

design, integration & test, and

operations through the coordinated
collection and refinement of

analysis and simulation models.
The KCT comprises the off-line

knowledge-base design component,

while the SOARS shell represents

the on-line operational component

of the integrated system.

During the coming year we intend

to produce a working prototype of
KCT/SOARS and release it to one or

more project teams

creating spacecraft

evaluating simulated

control. We plan
demonstrations

for use in

models and

autonomous

to develop
that will focus on

the Advanced Tracking and Data

Relay Satellite (ATDRS) and a Polar

Orbiting Platform (POP). The

procedural control and high-level

tasking elements of this year's

development will be combined with

the telemetry monitoring elements

of the Spacecraft Fault
Management System, or SFMS, (a

currently operational real-time

expert system) to complete the

prototype SOARS architecture. The
current SFMS, which is based on

symptomatic analysis of fault
conditions, is being upgraded to
handle model-based fault

diagnosis.

Once developed, KCT/SOARS will

provide spacecraft designers and

operators with an integrated

prototyping environment for

capturing and then using spacecraft
data and models. The initial

prototyping environment is
specifically aimed at a) generating

simple, well-structured models

which can be later expanded; b)

diagnosing a small number of
faults to a level where a certified

automatic procedure can reliably

rectify or evaluate the condition;

and c) providing a straightforward

capability for high-level tasking

(ie, simple on-board procedure

activation) from the ground. Fully
automated corrective action

procedures, in general, will not be

provided; instead, automated
control will be limited to the

execution of simple diagnostic

procedures capable of providing

backup information. We believe a

249

careful, gradual approach to
increased levels of satellite

autonomy is the only viable

approach, considering the potential

consequences of precipitous
actions.

Cited Works

Albus, J.S., McCain, H.G., Lumia, R.L., NASA/NBS Standard Reference Model

for Telerobot Control System Architecture (NASREM), National Bureau of

Standards, 13 Mar 87.

Brown, D.A., Software Requirements Specification for a Space Vehicle

Autonomous Controller, TRW Memo, 23 May 89.

Brown, D.A., Autonomous Controller Block Diagrams, TRW Memo, 31 May 89.

Fu, K.S., Gonzalez, R.C., Lee, C.S.G., Robotics: Control, Sensing, Vision, and

Intelligence, McGraw-Hill, New York, 1987.

Goddard Space Flight Center (GSFC), Flight Telerobotics Servicer (FTS)

Requirements Document, 1988.

Hamilton, M., Dignam, F., Murrin, J., "SCARES: A Spacecraft Control

Anomaly Resolution Expert System", Proceedings of Expert Systems in

Government Symposium, IEEE, Oct 86.

Lawson, D.L., James, M.L., "SHARP: A Multi-mission AI System for

Spacecraft Telemetry Monitoring and Diagnosis", Goddard Conference on

Space Applications of Artificial Intelligence, May 1989.

Parks, K.G., Broten, T.A., Rathe, R.A., "SFMS: An Expert System for

Spacecraft Operations", Second Annual Conference on Innovative
Applications of Artificial Intelligence (IAAI-90), May 1990.

Siemens, R.W., Golden, M., Ferguson, J.C., "StarPlan I1: Evolution of an

Expert System", Proceedings Fifth National Conference on Artificial

Intelligence (AAAI-86), Aug 86.

Sobieski, S., Customer Data and Operations System (CDOS) Operations

Concept Document Version 1.0, Goddard Space Flight Center, Jun 1989.

Stager, D.C., Satellite Contingency Analyses and Schematics:

0014 - 0017, TRW Report # 45021-321-710A3-018, 2 Mar 87.

Satellites

250

Special Topics

